์†์‹ค ํ•จ์ˆ˜ (loss function)
ยท
๐Ÿ‘พ Deep Learning
๋ชจ๋ธ์„ ํ•™์Šตํ•  ๋•Œ ์†์‹คํ•จ์ˆ˜๋ฅผ ์ง€ํ‘œ๋กœ ์‚ผ๊ณ  ๋ชจ๋ธ์˜ ํ•™์Šต์„ ๊ด€์ฐฐํ•œ๋‹ค. ์ •ํ™•๋„๋ฅผ ๋ชฉํ‘œ๋กœ ํ•˜๋ฉด ๋˜๋Š”๋ฐ ์™œ ์ •ํ™•๋„๋ฅผ ์ง€ํ‘œ๋กœ ํ•˜์ง€ ์•Š์„๊นŒ? ๊ทธ ์ด์œ ๋Š” ๋ฏธ๋ถ„์„ ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ํ•™์Šต ๋ชจ๋ธ์—์„œ ์ •ํ™•๋„๋Š” ๋Œ€๋ถ€๋ถ„์ด ๋ฏธ๋ถ„๊ฐ’์ด 0์ธ ์ง€์ ์œผ๋กœ ์‚ผ์•„ ๋ฏธ๋ถ„๊ฐ’์— ๋Œ€ํ•œ ๋ณ€ํ™”๋ฅผ ์•Œ์ˆ˜ ์—†๋‹ค. ์ด์— ๋ฐ˜๋ฉด ์†์‹คํ•จ์ˆ˜๋Š” ๋ฏธ๋ถ„๊ฐ’์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š์•„ ๋ณ€ํ™”๋Ÿ‰์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ •ํ™•๋„๋Š” ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๋ณ€ํ™”์— ๊ฑฐ์˜ ๋ฐ˜์‘์„ ๋ณด์ด์ง€ ์•Š๊ณ  ๋ฐ˜์‘์ด ์žˆ๋”๋ผ๋„ ๊ทธ ๊ฐ’์ด ๋ถˆ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋กœ ๊ณ„๋‹จ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ–ˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉด 0์„ ๊ธฐ์ค€์œผ๋กœ ๋ฏธ๋ถ„๊ฐ’์ด ๋ชจ๋‘ 0์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ์ฃผ๋Š” ๋ณ€ํ™”๋ฅผ ๊ณ„๋‹จํ•จ์ˆ˜๊ฐ€ ๋ชจ๋‘ ์‚ฌ๋ผ์ง€๊ฒŒ ๋งŒ๋“ค์–ด ์†์‹คํ•จ์ˆ˜์˜ ๊ฐ’์— ์•„๋ฌด๋Ÿฐ ๋ณ€ํ™”๊ฐ€ ์—†๋‹ค. ์‹œ๊ทธ๋ชจ์ด๋“œ ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ฏธ๋ถ„ ๊ฐ’์ด 0์ด ๋˜๋Š” ๊ตฌ๊ฐ„์ด ์—†์–ด ๋ชจ๋“  ๊ตฌ๊ฐ„์—์„œ ๋งค๊ฐœ ๋ณ€์ˆ˜์˜..
tensorboard ์‚ฌ์šฉ๋ฒ•, gpu ํ• ๋‹น ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ
ยท
๐Ÿ‘พ Deep Learning
[tensorboard] ์•„๋‚˜์ฝ˜๋‹ค ๋ช…๋ น prompt >tensorboard --logdir=./path/logs/ [gpu ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ] tf version 1.xx config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) [gpu ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ] tf version 2.xx config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True session = tf.compat.v1.Session(config=config) [gpu ์‚ฌ์šฉ๋Ÿ‰ 80%] config = tf.compat.v1.ConfigProto() conf..
OSError: [WinError 127] ์ง€์ •๋œ ํ”„๋กœ์‹œ์ €๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. Error loading \\torch\\lib\\*_ops_gpu.dll or one of its dependencies.
ยท
๐Ÿ‘พ Deep Learning
ํ•ด๋‹น ์˜ค๋ฅ˜๋Š” pytorch ๋ฒ„์ „์„ 1.5.1์ดํ•˜๋กœ ๋‚ฎ์ถ”๋ฉด ํ•ด๊ฒฐ๋œ๋‹ค. ๋ฒ„์ „๋ณ„ ์„ค์น˜ ๋ฐฉ๋ฒ• pytorch.org/get-started/previous-versions/ PyTorch An open source deep learning platform that provides a seamless path from research prototyping to production deployment. pytorch.org
TFBertModel parameter
ยท
๐Ÿ‘พ Deep Learning
huggingface.co/transformers/model_doc/bert.html BERT — transformers 4.3.0 documentation past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) – Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_he huggingface.co vocab_size (int, optional, defaults to 3..
BERT (Deep Bidirectional Transformers for Language Understanding)
ยท
๐Ÿ—ฃ๏ธ Natural Language Processing
BERT๋Š” 2018๋…„ ๊ตฌ๊ธ€์—์„œ ๊ณต๊ฐœํ•œ ๋…ผ๋ฌธ์ธ BERT: Deep Bidirectional Transformers for Language Understanding์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋ธ๋กœ์„œ ๋น„์ง€๋„ ํ•™์Šต์„ ํ†ตํ•ด ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๋“ค์–ด๊ฐ€๊ธฐ ์ „์— ์‚ฌ์ „ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋Š” ๋ชจ๋ธ์ด๋‹ค. ๋ฒ„ํŠธ์˜ ํŠน์ง•์€ ๋‹ค๋ฅธ ์‚ฌ์ „ ๋ชจ๋ธ ๊ธฐ๋ฒ•์ธ GPT๋‚˜ ELMo์™€ ๋‹ค๋ฅด๊ฒŒ ์–‘๋ฐฉํ–ฅ์„ฑ์„ ๊ฐ€์ง€๊ณ  ํ•™์Šตํ•œ๋‹ค. ๋งˆ์Šคํฌ ์–ธ์–ด ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ฒ„ํŠธ๋Š” word2vec์˜ CBOW ์ฒ˜๋Ÿผ ์ฃผ๋ณ€๋‹จ์–ด๋ฅผ ํ†ตํ•ด ์˜๋ฏธ๋ฅผ ํŒŒ์•…ํ•œ๋‹ค. ๋งˆ์Šคํฌ ์–ธ์–ด ๋ชจ๋ธ์ด๋ž€ ์–‘๋ฐฉํ–ฅ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์–ธ์–ด ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ž…๋ ฅ ๋ฌธ์žฅ์ด ์ฃผ์–ด์ง„ ๊ฒฝ์šฐ ์ผ๋ถ€ ๋‹จ์–ด๋“ค์„ ๋งˆ์Šคํ‚นํ•ด์„œ ํ•ด๋‹น ๋‹จ์–ด๋ฅผ ๋ชจ๋ธ์ด ์•Œ์ง€ ๋ชปํ•˜๋„๋ก ๊ฐ€๋ฆฐ๋‹ค. ๊ทธ ํ›„ ๋ชจ๋ธ์„ ํ†ตํ•ด ๋งˆ์Šคํ‚น๋œ ๋‹จ์–ด๊ฐ€ ๋ฌด์—‡์ธ์ง€ ์˜ˆ์ธกํ•œ๋‹ค. ์ž…๋ ฅ๊ฐ’์œผ๋กœ ๋“ค์–ด๊ฐ„ ๋ฌธ์žฅ ..
Softmax RuntimeWarning ํ•ด๊ฒฐ
ยท
๐Ÿ‘พ Deep Learning
softmax ๊ตฌํ˜„ def softmax(x): return np.exp(x)/np.sum(np.exp(x)) ์ˆ˜์‹์„ ์ž˜ ๊ตฌํ˜„ํ–ˆ์ง€๋งŒ ํ•œ ๊ฐ€์ง€ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. softmax([900,123,22]) # array([nan, 0., 0.] 900๋งŒ ๋ผ๋„ Runtimewarning ๊ณผ ํ•จ๊ป˜ nan ๊ฐ’์ด ๋‚˜์˜จ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ’์„ ์ง‘์–ด ๋„ฃ์–ด ๊ฐ’์— ์˜ํ–ฅ์„ ์ฃผ์ง€์•Š๊ณ  0์œผ๋กœ ๊ฐ€์ง€ ์•Š๊ฒŒ ํ•ด์•ผํ•œ๋‹ค. ์ธํ’‹์˜ ์ตœ๋Œ“๊ฐ’์„ ๊ฐ’๋“ค์—์„œ ๋นผ์„œ ํ•ด๊ฒฐํ•œ๋‹ค. def softmax(x): return np.exp(x-np.max(x))/np.sum(np.exp(x-np.max(x))) softmax([900,123,22]) # array([0., 0., 0.])
๋‹คํ–ˆ๋‹ค
B's