[Code-Server] ์ฝ”๋“œ ์„œ๋ฒ„์—์„œ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ์‚ฌ์šฉํ•˜๊ธฐ
ยท
๐Ÿ Python
pip install jupyter-vscode-server https://pypi.org/project/jupyter-vscode-server/ jupyter-vscode-server A Jupyter extension to launch VS Code pypi.org [Using Docker] ENV CODESERVER_URL="https://github.com/cdr/code-server/releases/download/1.1119-vsc1.33.1/code-server1.1119-vsc1.33.1-linux-x64.tar.gz" CODESERVER="code-server1.1119-vsc1.33.1-linux-x64" RUN wget ${CODESERVER_URL} && tar xvf ${CODES..
[Code-Server] import-im6.q16: unable to open X server ์—๋Ÿฌ
ยท
๐Ÿ Python
import matplotlib matplotlib.use('Agg") import matplotlib.pyplot as plt plt.plot() plt.savefig()...
๋ฐ์ดํ„ฐ ์•„์นด๋ฐ๋ฏธ 8์ผ์ฐจ ์ˆ˜์—… ์ •๋ฆฌ
ยท
๐Ÿ‘พ Deep Learning
[8์ผ์ฐจ] 1. Deep Learning์˜ ๊ตฌ์กฐ ์†Œ๊ฐœ * Wn(Weight) : ํšŒ๊ท€ ๋ถ„์„์˜ ํšŒ๊ท€ ๊ณ„์ˆ˜์™€ ๋น„์Šทํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ํšŒ๊ท€ ๋ถ„์„์˜ ๋ชฉ์ ๊ณผ ๋™์ผ ํ•˜๊ฒŒ ๋ณ€์ˆ˜๋ฅผ ํ†ตํ•ด Output์„ ์ฐพ๋Š” ์‹์„ ๊ตฌํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. 2. ๋‹ค์–‘ํ•œ Optimizer ์†Œ๊ฐœ * ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•(Gradient descent) : - stochastic gradient descent : ๊ฐ’์„ ํ•˜๋‚˜ํ•˜๋‚˜ ๋„ฃ์–ด ๊ฐฑ์‹ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ„์ด ์˜ค๋ž˜๊ฑธ๋ฆฐ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. - Batch gradient descent : Training set data์˜ ๊ฐ€์ค‘์น˜ ํ‰๊ท ์„ ์ด์šฉํ•˜์—ฌ ๊ฐฑ์‹  - Mini Batch : ์ผ๋ถ€ ํ›ˆ๋ จ์ž๋ฃŒ์˜ ๋ฌด์ž‘์œ„ ๋ณต์› ์ถ”์ถœํ•˜์—ฌ Training set data์˜ ๊ฐ€์ค‘์น˜ ํ‰๊ท ์„ ๊ฐฑ์‹  3. Learning rate๋ฅผ ์กฐ์ ˆํ•˜๋Š” ๋ฐฉ์‹ - ADAM..
[PyTorch] ๊ธฐ์กด ์ œ๊ณต model ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
ยท
๐Ÿ‘พ Deep Learning
- torchvision.models๋ฅผ ํ†ตํ•ด model ๋ถˆ๋Ÿฌ์˜ค๊ธฐ import torchvision.models as models - model ์„ค์ • (image clf : resnet34, vgg, alexnet, squeezenet, densenet, googlenet etc) model = models.resnet34(pretrained=False) - model.cuda = model.to(DEVICE) ๋ชจ๋ธ ์ž…๋ ฅ model = model.cuda # model.to(DEVICE)
[Pytorch] CNN - Conv2D
ยท
๐Ÿ‘พ Deep Learning
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') is_channel : ์ด๋ฏธ์ง€์˜ ์ฑ„๋„ ์ˆ˜ (ex, color dim) out_channel : Filter์˜ ๊ฐœ์ˆ˜ = Output์˜ depth kernel_size : Filter์˜ ํฌ๊ธฐ padding : Convolution์ด ์ง„ํ–‰ํ•˜๋ฉด์„œ ๊ฒน์ณ์ง€๋Š” ๊ณต๊ฐ„์„ 0์œผ๋กœ ์ฑ„์›Œ ์—ฐ์‚ฐ ์ˆ˜๋ฅผ ๋™์ผํ•˜๊ฒŒ ํ•ด์ค€๋‹ค. stride : ํ•„ํ„ฐ ์ง„ํ–‰ ๊ฐ„๊ฒฉ
GTX 1660 super์— ๋งž๋Š” tensorflow, python, CUDA, Cudnn ๋ฒ„์ „
ยท
๐Ÿ‘พ Deep Learning
[main] gtx 1660 super Python = 3.7.6 tensorflow_version=2.4.0 CUDA = 11.0 cudnn = 8.0.5
๋‹คํ–ˆ๋‹ค
B's