[2023-11] ๋‹น์‹ ์˜ ์ธ์ƒ ์ด์•ผ๊ธฐ
ยท
๐Ÿ“š Book
์ œ๋ชฉ: ๋‹น์‹ ์˜ ์ธ์ƒ ์ด์•ผ๊ธฐ ์ €์ž: ํ…Œ๋“œ์ฐฝ keyword ๋ฐ”๋นŒ๋กœ์˜ ํƒ‘, ์ด๋ฆ„=์˜ํ˜ผ, division by zero, ๊ฐ์ •, ๊ฒฝํ—˜, ๋ฐœ์ „์˜ ๋, ํ˜„์ƒ ์ดํ•ด, ์นผ๋ฆฌ์•„๊ทธ๋…ธ์‹œ์•„(์นผ๋ฆฌ)
[OWASP-LLM] Top 10 List for Large Language Models version 0.1 - (10) Training Data Poisoning
ยท
๐Ÿƒ Routine
LLM10:2023 Training Data Poisoning ์„ค๋ช…: ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋…์ ์€ ๊ณต๊ฒฉ์ž๊ฐ€ LLM์˜ training์ด๋‚˜ fine-tunning์„ ์กฐ์ž‘ํ•ด ๋ชจ๋ธ์˜ ๋ณด์•ˆ, ํšจ๊ณผ์„ฑ ๋˜๋Š” ์œค๋ฆฌ์  ํ–‰๋™์„ ์ €ํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ์ทจ์•ฝ์ , ํ›„๋ฌธ, ํŽธํ–ฅ์„ ๋„์ž…ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์ธ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋…์  ๋ฌธ์ œ: LLM์— ์•…์˜์ ์œผ๋กœ ์กฐ์ž‘๋œ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ํ›„๋ฌธ์ด๋‚˜ ์ทจ์•ฝ์  ๋„์ž… LLM์— ํŽธํ–ฅ์„ ์ฃผ์ž…ํ•˜์—ฌ ํŽธํ–ฅ์ ์ด๊ฑฐ๋‚˜ ๋ถ€์ ์ ˆํ•œ ์‘๋‹ต์„ ์ƒ์„ฑ ์„ธ์„ธํ•œ ์กฐ์ • ๊ณผ์ •์„ ์ด์šฉํ•˜์—ฌ LLM์˜ ๋ณด์•ˆ์ด๋‚˜ ํšจ๊ณผ์„ฑ์„ ์นจํ•ด ์˜ˆ๋ฐฉ ๋ฐฉ๋ฒ•: ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ถœ์ฒ˜์—์„œ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๊ณ  ํ’ˆ์งˆ์„ ๊ฒ€์ฆํ•˜์—ฌ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๋ฌด๊ฒฐ์„ฑ์„ ๋ณด์žฅ ์ž ์žฌ์ ์ธ ์ทจ์•ฝ์ ์ด๋‚˜ ํŽธํ–ฅ์„ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—์„œ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฒฌ๊ณ ํ•œ ๋ฐ์ดํ„ฐ ์ •์ œ ๋ฐ ์ „์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• ๊ตฌํ˜„ LLM์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์™€ ์„ธ์„ธํ•œ ..
[CS324] Introduction
ยท
๐Ÿ‘พ Deep Learning
https://stanford-cs324.github.io/winter2022/lectures/introduction/ Introduction Understanding and developing large language models. stanford-cs324.github.io CS324์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค! ์ด ๊ณผ์ •์€ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์˜ ์ดํ•ด์™€ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ฐ•์ขŒ์ž…๋‹ˆ๋‹ค. 1. ์–ธ์–ด ๋ชจ๋ธ์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€์š”? 2. ๊ฐ„๋‹จํ•œ ์—ญ์‚ฌ 3. ์ด ๊ฐ•์ขŒ๊ฐ€ ์™œ ํ•„์š”ํ•œ๊ฐ€์š”? 4. ์ด ๊ฐ•์ขŒ์˜ ๊ตฌ์กฐ 5. ์–ธ์–ด ๋ชจ๋ธ์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€์š”? 1. ์–ธ์–ด ๋ชจ๋ธ์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€์š”? ์–ธ์–ด ๋ชจ๋ธ (LM)์˜ ํด๋ž˜์‹ํ•œ ์ •์˜๋Š” ํ† ํฐ ์‹œํ€€์Šค์— ๋Œ€ํ•œ ํ™•๋ฅ  ๋ถ„ํฌ์ž…๋‹ˆ๋‹ค. ํ† ํฐ ์ง‘ํ•ฉ (\sV)๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด ๋ด…์‹œ๋‹ค. ์–ธ์–ด ๋ชจ๋ธ (p)์€ ๊ฐ๊ฐ์˜ ํ† ํฐ ์‹œํ€€..
[OWASP-LLM] Top 10 List for Large Language Models version 0.1 - (9) Improper Error Handling
ยท
๐Ÿƒ Routine
LLM09:2023 Improper Error Handling ์„ค๋ช…: ์ž˜๋ชป๋œ ์˜ค๋ฅ˜ ์ฒ˜๋ฆฌ๋Š” ์˜ค๋ฅ˜ ๋ฉ”์‹œ์ง€๋‚˜ ๋””๋ฒ„๊น… ์ •๋ณด๊ฐ€ ๊ณต๊ฒฉ์ž์—๊ฒŒ ๋ฏผ๊ฐํ•œ ์ •๋ณด, ์‹œ์Šคํ…œ ์„ธ๋ถ€ ์ •๋ณด ๋˜๋Š” ์ž ์žฌ์ ์ธ ๊ณต๊ฒฉ ๊ฒฝ๋กœ๋ฅผ ๋…ธ์ถœ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์ธ ์ž˜๋ชป๋œ ์˜ค๋ฅ˜ ์ฒ˜๋ฆฌ ๋ฌธ์ œ: ์˜ค๋ฅ˜ ๋ฉ”์‹œ์ง€๋ฅผ ํ†ตํ•ด ๋ฏผ๊ฐํ•œ ์ •๋ณด๋‚˜ ์‹œ์Šคํ…œ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋…ธ์ถœ์‹œํ‚ค๋Š” ๊ฒฝ์šฐ ๊ณต๊ฒฉ์ž๊ฐ€ ์ž ์žฌ์ ์ธ ์ทจ์•ฝ์ ์ด๋‚˜ ๊ณต๊ฒฉ ๊ฒฝ๋กœ๋ฅผ ์‹๋ณ„ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋Š” ๋””๋ฒ„๊น… ์ •๋ณด๋ฅผ ๋ˆ„์ถœ์‹œํ‚ค๋Š” ๊ฒฝ์šฐ ์˜ค๋ฅ˜๋ฅผ ์šฐ์•„ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•˜์—ฌ ์˜ˆ๊ธฐ์น˜ ์•Š์€ ๋™์ž‘์ด๋‚˜ ์‹œ์Šคํ…œ ์ถฉ๋Œ์„ ์œ ๋ฐœํ•˜๋Š” ๊ฒฝ์šฐ ์˜ˆ๋ฐฉ ๋ฐฉ๋ฒ•: ์˜ค๋ฅ˜๋ฅผ ์žก์•„๋‚ด๊ณ  ๋กœ๊ทธ๋กœ ๊ธฐ๋กํ•˜๋ฉฐ ์šฐ์•„ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์ ์ ˆํ•œ ์˜ค๋ฅ˜ ์ฒ˜๋ฆฌ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. ์˜ค๋ฅ˜ ๋ฉ”์‹œ์ง€์™€ ๋””๋ฒ„๊น… ์ •๋ณด๊ฐ€ ๋ฏผ๊ฐํ•œ ์ •๋ณด๋‚˜ ์‹œ์Šคํ…œ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ๋…ธ์ถœ์‹œํ‚ค์ง€ ์•Š๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž์—..
Textbooks Are All You Need
ยท
๐Ÿ—ฃ๏ธ Natural Language Processing
Textbooks Are All You Need Abstract ์šฐ๋ฆฌ๋Š” phi-1์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๊ฒฝ์Ÿ ๋ชจ๋ธ๋ณด๋‹ค ํ›จ์”ฌ ์ž‘์€ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. phi-1์€ 1.3B ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐ€์ง„ Transformer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋กœ, ์›น์—์„œ "๊ต๊ณผ์„œ ์ˆ˜์ค€"์˜ ๋ฐ์ดํ„ฐ (6B ํ† ํฐ)์™€ GPT-3.5 (1B ํ† ํฐ)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 8 A100์—์„œ 4์ผ ๋™์•ˆ ํ›ˆ๋ จ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ์ž‘์€ ๊ทœ๋ชจ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  phi-1์€ HumanEval์—์„œ 50.6%์˜ pass@1 ์ •ํ™•๋„์™€ MBPP์—์„œ 55.5%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ฝ”๋”ฉ ์—ฐ์Šต ๋ฐ์ดํ„ฐ์…‹์—์„œ finetuning ๋‹จ๊ณ„ ์ด์ „์ธ phi-1-base ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ํ›ˆ๋ จ๋œ 350M ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐ€์ง„ ๋” ์ž‘์€ ๋ชจ๋ธ์ธ phi-1-..
[Drag Your GAN] Interactive Point-based Manipulation on the Generative Image Manifold
ยท
๐Ÿ‘พ Deep Learning
https://vcai.mpi-inf.mpg.de/projects/DragGAN/ Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold --> Abstract Synthesizing visual content that meets users' needs often requires flexible and precise controllability of the pose, shape, expression, and layout of the generated objects. Existing approaches gain controllability of generative adversarial net vcai.mpi-i..
๋‹คํ–ˆ๋‹ค
B's