728x90

โ€œ๋Œ€ํ•œ๋ฏผ๊ตญ ๋ฒ•๋ฅ  ์ „๋ฌธโ€์„ ๊ฐ€์ง€๊ณ  OpenAI(ChatGPT), GOOGLE(Gemini), Antropic(Claude), Upstage(Solar)๋ฅผ ๋Œ€์ƒ์œผ๋กœ embedding ํ›„ token ์ˆ˜๋ฅผ ๋น„๊ตํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰

Goal : API๋กœ ์ œ๊ณต๋˜๋Š” LLM ์ค‘ ์–ด๋–ค ๋ชจ๋ธ์ด ํ•œ๊ตญ์–ด token์„ ๊ฐ€์žฅ ์ ๊ฒŒ ์‚ฌ์šฉํ•˜๊ณ  ๋น„์šฉ ์ €๋ ดํ•œ์ง€ ๋น„๊ต

  • Input Text(๋Œ€ํ•œ๋ฏผ๊ตญํ—Œ๋ฒ• ์ „๋ฌธ, text length=373)
์œ ๊ตฌํ•œ ์—ญ์‚ฌ์™€ ์ „ํ†ต์— ๋น›๋‚˜๋Š” ์šฐ๋ฆฌ๋“ค ๋Œ€ํ•œ๊ตญ๋ฏผ์€ ๊ธฐ๋ฏธ ์‚ผ์ผ์šด๋™์œผ๋กœ ๋Œ€ํ•œ๋ฏผ๊ตญ์„ 
๊ฑด๋ฆฝํ•˜์—ฌ ์„ธ๊ณ„์— ์„ ํฌํ•œ ์œ„๋Œ€ํ•œ ๋…๋ฆฝ์ •์‹ ์„ ๊ณ„์Šนํ•˜์—ฌ ์ด์ œ ๋ฏผ์ฃผ๋…๋ฆฝ๊ตญ๊ฐ€๋ฅผ ์žฌ๊ฑดํ•จ์— ์žˆ์–ด์„œ 
์ •์˜์ธ๋„์™€ ๋™ํฌ์• ๋กœ์จ ๋ฏผ์กฑ์˜ ๋‹จ๊ฒฐ์„ ๊ณต๊ณ ํžˆ ํ•˜๋ฉฐ ๋ชจ๋“  ์‚ฌํšŒ์  ํ์Šต์„ ํƒ€ํŒŒํ•˜๊ณ  ๋ฏผ์ฃผ์ฃผ์˜์ œ์ œ๋„๋ฅผ 
์ˆ˜๋ฆฝํ•˜์—ฌ ์ •์น˜, ๊ฒฝ์ œ, ์‚ฌํšŒ, ๋ฌธํ™”์˜ ๋ชจ๋“  ์˜์—ญ์— ์žˆ์–ด์„œ ๊ฐ์ธ์˜ ๊ธฐํšŒ๋ฅผ ๊ท ๋“ฑํžˆ ํ•˜๊ณ  ๋Šฅ๋ ฅ์„ 
์ตœ๊ณ ๋„๋กœ ๋ฐœํœ˜์ผ€ ํ•˜๋ฉฐ ๊ฐ์ธ์˜ ์ฑ…์ž„๊ณผ ์˜๋ฌด๋ฅผ ์™„์ˆ˜์ผ€ํ•˜์—ฌ ์•ˆ์œผ๋กœ๋Š” ๊ตญ๋ฏผ์ƒํ™œ์˜ ๊ท ๋“ฑํ•œ ํ–ฅ์ƒ์„ ๊ธฐํ•˜๊ณ  
๋ฐ–์œผ๋กœ๋Š” ํ•ญ๊ตฌ์ ์ธ ๊ตญ์ œํ‰ํ™”์˜ ์œ ์ง€์— ๋…ธ๋ ฅํ•˜์—ฌ ์šฐ๋ฆฌ๋“ค๊ณผ ์šฐ๋ฆฌ๋“ค์˜ ์ž์†์˜ ์•ˆ์ „๊ณผ ์ž์œ ์™€ ํ–‰๋ณต์„ ์˜์›ํžˆ 
ํ™•๋ณดํ•  ๊ฒƒ์„ ๊ฒฐ์˜ํ•˜๊ณ  ์šฐ๋ฆฌ๋“ค์˜ ์ •๋‹น ๋˜ ์ž์œ ๋กœํžˆ ์„ ๊ฑฐ๋œ ๋Œ€ํ‘œ๋กœ์จ ๊ตฌ์„ฑ๋œ ๊ตญํšŒ์—์„œ ๋‹จ๊ธฐ 4281๋…„ 7์›” 12์ผ 
์ด ํ—Œ๋ฒ•์„ ์ œ์ •ํ•œ๋‹ค.

1) OpenAI

  • Embedding API ๋น„์šฉ 
MODEL ~ PAGES PER DOLLAR PERFORMANCE ON MTEB EVAL MAX INPUT Usage
text-embedding-3-small 62,500 62.3% 8191 $0.02 / 1M tokens
text-embedding-3-large 9,615 64.6% 8191 $0.13 / 1M tokens
text-embedding-ada-002 12,500 61.0% 8191 $0.10 / 1M tokens
  • Model ๋ณ„ Tokenizer(tiktoken)
Encoding name OpenAI models
cl100k_base gpt-4, gpt-3.5-turbo, text-embedding-ada-002, text-embedding-3-small, text-embedding-3-large
p50k_base Codex models, text-davinci-002, text-davinci-003
r50k_base (or gpt2) GPT-3 models like davinci

 

  • Result (373 โ†’ 396, 815)
    • Embedding Token
    • Origin Text : 373 Embed Text(cl100k_base) : 396 Embed Text(r50k_base) : 815 Embed Text(p50k_base) : 815
    • Price
      • text-embedding-3-small - 0.02 * 1300/1000000*(396)=0.10296โ‚ฉ
      • text-embedding-3-large - 0.13 * 1300/1000000*(396)=0.67524โ‚ฉ
      • ada v2 - 0.10 * 1300/1000000*(396)=0.5268โ‚ฉ
Eval benchmark ada v2 text-embedding-3-small text-embedding-3-large
MIRACL average 31.4 44.0 54.9
MTEB average 61.0 62.3 64.6
Test Embedding token count 396 396 396

 

 OpenAI์˜ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์˜ ๋ฐด์น˜๋งˆํฌ๋ฅผ ๋ณด๋ฉด text-embedding-3-small ๋ชจ๋ธ์˜ ๋น„์šฉ์ด ๊ฐ€์žฅ ์ ๊ณ  ํ•ฉ๋ฆฌ์ ์ธ ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋ฐด์น˜๋งˆํฌ๊ฐ€ ํ•œ๊ตญ์–ด ๋ฐ์ดํ„ฐ์…‹์ด ์–ผ๋งˆ๋‚˜ ํฌํ•จ๋˜๊ณ  ํ•œ๊ตญ์–ด ebedding ์„ฑ๋Šฅ์€ ์–ผ๋งˆ๋‚˜ ์œ ํšจํ•œ์ง€ ์•Œ ์ˆ˜ ์—†์œผ๋‚˜ ada-v2์˜ ํ•œ๊ตญ์–ด ebedding model์˜ ์„ฑ๋Šฅ์ด ํ˜„์กด ์ตœ๊ฐ•์ž„(24/3/28)์„ ๊ฐ์•ˆํ•˜๋ฉด small model์˜ ์„ฑ๋Šฅ์€ ๋” ์ข‹์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.


2) Gemini-Pro

  • Embedding API ๋น„์šฉ (cloud.google.docs, ํ˜„์žฌ ๋ฌด๋ฃŒ / ์ถœ์‹œ ์˜ˆ์ •)
  • $0.0002 / 1000 string
  • Result(373โ†’262)
    • GeminiPro text-embedding-ada-002 korean encoding
      • Origin Text : 373
      • Embed Text(normal) : 262
      • Embed Text(normalize) : 262
    • Price
      • $0.000125 / 1K characters
      • $0.0025 / image
    • 0.000125 * 1300 / 1000 = 0.000162โ‚ฉ
  • Embedding Token

openai์˜ ํ† ํฐ ์ˆ˜ ๋ณด๋‹ค ํ›จ์”ฌ ์ ์€ ์ˆ˜์˜ ํ•œ๊ตญ์–ด ํ† ํฐ์„ ์‚ฌ์šฉํ•˜๋ฉด์„œ ๊ฐ€๊ฒฉ ๋˜ํ•œ ์ €๋ ดํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋‹ค๋งŒ gemini-pro์˜ ๊ฒฝ์šฐ embedding ์„ฑ๋Šฅ์ด ๊ณต๊ฐœ๋˜์ง€ ์•Š์•˜๊ฑฐ๋‚˜(?) leaderboard ์ˆœ์œ„๊ถŒ ๋ฐ–์ธ ๊ฒƒ์œผ๋กœ ๋ณด์•„ ๊ฐ€๊ฒฉ์ด ํ•ฉ๋ฆฌ์ ์ธ์ง€๋Š” ์•Œ ์ˆ˜ ์—†๋‹ค.


3) Claude

Model Price per thousand tokens Price per million tokens Number of free tokens
voyage-2 $0.0001 $0.1 50 million
voyage-large-2 $0.00012 $0.12 50 million
voyage-code-2 $0.00012 $0.12 50 million
  • Result (373โ†’543)
    • Origin Text : 373
    • Embed Text(voyage-2) : 543
    • Embed Normalize Text(voyage-2) : 543
    • Embed Text(voyage-large-2) : 543
    • Embed Normalize Text(voyage-large-2): 543
    Price
    • Embed Text(voyage-2) : 0.0000014118โ‚ฉ
    • Embed Text(voyage-large-2) : 0.0000016942โ‚ฉ
  • Anthropic Voyage-2 korean embedding

Anthropic์˜ Embedding model์˜ ์„ฑ๋Šฅ์€ ๊ณต๊ฐœ๋œ ๋ฆฌ๋”๋ณด๋“œ์— ์˜ํ•˜๋ฉด 2์œ„์— ์œ„์น˜ํ•ด ์žˆ๋‹ค. ํ•œ๊ตญ์–ด ํ†  ํฐ ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์•„ ํ•œ๊ตญ์–ด ์ž„๋ฒ ๋”ฉ์—๋Š” ์—ฐ์‚ฐ์ด ์กฐ๊ธˆ ๋” ๋“ค์–ด๊ฐ„๋‹ค. ํ•˜์ง€๋งŒ ๊ฐ€๊ฒฉ์ด ๋ง์ด ์•ˆ ๋  ์ •๋„๋กœ ์ €๋ ดํ•˜๊ณ  ์ดˆ์ฐฝ๊ธฐ GPT-4์˜ ํ•œ๊ตญ์–ด ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ๋Šฅ๊ฐ€? ๋น„์Šทํ•œ ์ •๋„๋กœ ์‚ฌ๋žŒ๋“ค์˜ ํ‰์ด ์žˆ์–ด ์ถ”์ฒœํ•œ๋‹ค.


4) Solar

  • Result (373โ†’190, 172)
    • Origin Text : 373
    • Embed Text(solar-1-mini-query) : 190
    • Embed Text(solar-1-mini-passage) : 172
    Price
    • Free (ํ˜„์žฌ ๋ฌด๋ฃŒ, ๊ฐ€๊ฒฉ ์ •์ฑ… ์—…๋ฐ์ดํŠธ X)
  • OpenAI Solar-1-mini korean embedding

Upstage ํ•œ๊ตญ ๊ธฐ์—…๋‹ต๊ฒŒ Token ์ˆ˜๊ฐ€ ๋ฐ˜์ด๋‚˜ ์ค„์–ด๋“  ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. Solar ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ ํ˜น์€ ํ•œ๊ตญ์–ด ๋‹ค๋ฅธ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ๋†’์•„์งˆ์ˆ˜๋ก ์ถ”๋ก  ์†๋„๋‚˜ Output์œผ๋กœ ๋‚˜์˜ค๋Š” ๊ธธ์ด์—๋„ ์˜ํ–ฅ์„ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ํ•œ๊ตญ์–ด domain ๋ชจ๋ธ์˜ ๋ฐœ์ „์€ ํ•„์ˆ˜

์ •๋ฆฌ

Company Embedding Model Price Token Count(373) Official Price
OpenAI text-embedding-3-small 0.10296โ‚ฉ 396(+6%) $0.02 / 1M tokens
OpenAI text-embedding-3-large 0.67524โ‚ฉ 396(+6%) $0.13 / 1M tokens
OpenAI ada-v2 0.5268โ‚ฉ 396(+6%) $0.10 / 1M tokens
Gemini-PRO gemini-pro 0.0425749โ‚ฉ 262(-30%) $0.000125 / 1K characters
Claude 3 voyage-2 0.0000014118โ‚ฉ 543(+45%) $0.0001 / 50M tokens
Claude 3 voyage-large-2 0.00000169416โ‚ฉ 543(+45%) $0.00012 / 50M tokens
Solar solar-1-mini-query - 190(-50%) Free
Solar solar-1-mini-passage - 172(-54%) Free

 

 

OpenAI text-embedding-3-small์˜ ๊ฐ’์„ 1000์›์œผ๋กœ ํ™˜์‚ฐ ํ–ˆ์„ ๋•Œ

Google์˜ Embedding model์€ 413์›

Anthropic์˜ Voyage-2๋Š” 0.0137์›

์œผ๋กœ Voyage-2์ด ๋น„๊ต๊ฐ€ ์•ˆ๋  ์ •๋„๋กœ ๊ฐ€๊ฒฉ์ด ์ €๋ ดํ•˜๋‹ค. 

 

์„ฑ๋Šฅ์€ ์ด ์ด ํ›„์— ์ˆ˜๋Šฅ ๊ตญ์–ด ์ง€๋ฌธ์„ ํ†ตํ•ด ์ธก์ •ํ•  ์˜ˆ์ •์ด๋‹ค.

 

 

 

 

 

 

 

๋ฐ˜์‘ํ˜•
๋‹คํ–ˆ๋‹ค