728x90

 

 

Large language model์„ ๋‘ ๋‹จ๊ณ„ ์Šคํ…์œผ๋กœ ํ•™์Šต ๋น„๊ต

  • (1) raw text์—์„œ ๋น„์ง€๋„ ํ•™์Šต์„ ํ†ตํ•ด ์ผ๋ฐ˜์ ์ธ ๋Œ€ํ™” ๋ฌธ์žฅ(general-purpose) ํ•™์Šต
  • (2) large scale instruction tuning๊ณผ ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ด human preference modeling

 

[Experiment] 

  • ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•ด 1000๊ฐœ์˜ ์‹ค์ œ ์œ ์ € ํ”„๋กฌํ”„ํŠธ์™€ high-quality ์‘๋‹ต์„ ์„ ๋ณ„.
  • 750๊ฐœ์˜ ์งˆ๋ฌธ๊ณผ ๋‹ต๋ณ€์„ Community forum์—์„œ ์„ ๋ณ„(Stack Exchang, wikiHow)
  • ์ถ”๊ฐ€๋กœ 250๊ฐœ์˜ ์งˆ๋ฌธ๊ณผ ๋‹ต๋ณ€์„ ์ˆ˜๋™์œผ๋กœ ์ž‘์„ฑ (Alignment style)
  • LLaMa [Touvron et al., 2023] 65B parameter model์— fine-tuning

 

[Result] 

  • LIMA๋Š” ์ด ๋‘ ์Šคํ…์„ ์ค‘์ ์œผ๋กœ ์ธก์ •
  • LIMA๋Š” 1,000๊ฐœ์˜ ์‹ ์ค‘ํžˆ ์„ ๋ณ„๋œ ํ”„๋กฌํ”„ํŠธ์™€ ์‘๋‹ต์— ๋Œ€ํ•ด์„œ๋งŒ standard supervised loss๋กœ 65B ํŒŒ๋ผ๋ฏธํ„ฐ LLaMa๋ฅผ fine-tuning, ๊ฐ•ํ™” ํ•™์Šต ๋˜๋Š” human preference modeling๋„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ.
  • LIMA๋Š” training data์˜ ์†Œ์ˆ˜์˜ ์˜ˆ์ œ์—์„œ๋งŒ ํŠน์ • ์‘๋‹ต ํ˜•์‹์„ ๋”ฐ๋ฅด๋Š” ๊ฒƒ(ex, ์—ฌํ–‰ ์ผ์ • ๊ณ„ํš, ์—ญ์‚ฌ์— ๋Œ€ํ•œ ์ถ”์ธก ๋“ฑ)์„ ํ•™์Šตํ•˜๋ฉฐ ๋ณต์žกํ•œ ์งˆ์˜๋ฅผ ์ฒ˜๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋‹ค. (training data์— ๋“ฑ์žฅํ•˜์ง€ ์•Š์€ ์ƒˆ๋กœ์šด ์ž‘์—…์— ๋Œ€ํ•ด์„œ๋„ generalize ํ•˜๊ธฐ ์ข‹์Œ)
  • ํ†ต์ œ๋œ ์‹คํ—˜์—์„œ LIMA์˜ ์‘๋‹ต์€ GPT-4 ์™€ ๋น„๊ตํ•ด 43% Bard ์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ 58%์ด์ƒ DaVinci003 65%๋กœ human feedback์œผ๋กœ ํ›ˆ๋ จ๋œ model๊ณผ์˜ ๋น„๊ตํ–ˆ์„ ๋•Œ ๊ฒฐ๊ณผ๋กœ large scale model์˜ ๋Œ€๋ถ€๋ถ„์ด ๊ฑฐ์˜ ๋ชจ๋“  ์ง€์‹์ด pretraining ์ค‘์— train๋œ๋‹ค๋Š” ๊ฒƒ์„ ๊ฐ•๋ ฅํ•˜๊ฒŒ ์‹œ์‚ฌํ•จ. ๋”ฐ๋ผ์„œ, ๊ณ ํ’ˆ์งˆ ์ถœ๋ ฅ์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” limited instruction tuning data ๋งŒ์œผ๋กœ๋„ ์ถฉ๋ถ„ํ•˜๋‹ค.

 

[Concept] 

Superficial Alignment Hypothesis 

 Superficial Alignment Hypothesis๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ชจ๋ธ์˜ ์ง€์‹๊ณผ ๋Šฅ๋ ฅ์€ pretraining ์ค‘์— ๊ฑฐ์˜ ์™„์ „ํžˆ ํ•™์Šต๋˜๋ฉฐ, alignment๋Š” ์‚ฌ์šฉ์ž์™€ ์ƒํ˜ธ์ž‘์šฉํ•  ๋•Œ ์–ด๋–ค subdistribution์˜ format์„ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ๋ชจ๋ธ์—๊ฒŒ ๊ฐ€๋ฅด์นœ๋‹ค. ๋งŒ์•ฝ ์ด ๊ฐ€์„ค์ด ๋งž๋‹ค๋ฉด, alignment๋Š” ์ฃผ๋กœ style์„ ๋ฐฐ์šฐ๋Š” ๊ฒƒ์ด๋ฏ€๋กœ, pretraining๋œ ์–ธ์–ด ๋ชจ๋ธ์„ ๋งค์šฐ ์ž‘์€ ์˜ˆ์ œ data(1000)๋กœ ์ถฉ๋ถ„ํžˆ ํŠœ๋‹ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด Superficial Alignment Hypothesis [Kirstain et al., 2021] ์ด๋‹ค.

 

 

 

 

์ค‘๋ณต์ด ์—†๊ณ  ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•œ ์ผ๋ฐ˜์ ์ธ ์ž‘์€ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ instruction์ด Alignment style๋กœ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋‹ค. 

 

๊ถ๊ธˆ์  

  • LIMA๋Š” RLHF ๋ชจ๋ธ๊ณผ ๋น„๊ต์‹œ ๋ชจ๋ธ๋“ค์€ LIMA์™€ ๊ฐ™์€ dataset์„ ํ•™์Šต ํ•˜์ง€ ์•Š์•˜๋‹ค๋Š” ์ 
  • ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋น„๊ต ๋ชจ๋ธ๋“ค์˜ Response๋“ค์— ๋Œ€ํ•œ ์ •๋‹ต์— ๋Œ€ํ•œ ํ‰๊ฐ€๊ฐ€ ๊ณต์ •ํ•œ์ง€ ์•Œ์ˆ˜ ์—†์Œ. (metric)
  • RLHF๊ฐ€ ์ •๋ง๋กœ ํ•„์š”ํ•œ์ง€์— ๋Œ€ํ•œ ์‹คํ—˜ ์—ฌ๋ถ€ case๊ฐ€ ์ ์€ ๋ฐ์ดํ„ฐ์—์„œ๋งŒ ์œ ํšจํ•œ์ง€ ์•„๋‹ˆ๋ฉด ์—„์ฒญ๋‚˜๊ฒŒ ๋งŽ์€ RLHF ์ž‘์—… ์ˆ˜ํ–‰์‹œ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ ์งˆ์ง€ ๊ถ๊ธˆ
๋ฐ˜์‘ํ˜•

'๐Ÿ—ฃ๏ธ Natural Language Processing' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

Text Embedding + t-SNE Visualization  (0) 2023.06.22
[Langchain] paper-translator  (0) 2023.06.16
paper-translator test (LIMA: Less Is More for Alignment)  (0) 2023.06.08
[Langchain] Paper-Translator  (0) 2023.06.05
[LangChain] Sentence-Transformer  (0) 2023.06.01
๋‹คํ–ˆ๋‹ค